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Input Gaussian channel Output

Radiation modes:  physical transmission line: Noisy output signal
OP’“C&“ waves, optical fiber, free space communication,

microwaves, satellite link, micro-waveguide, etc.

radio waves,

efc.

WARNING for typical QIP attendees:
this talk may have some implications in the real world.




Input Gaussian channel Output
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Radiation modes:  physical transmission line: Noisy output signal
09“06“ waves, optical fiber, free space communication,
microwaves, satellite link, micro-waveguide, etc.
radio waves,

etc.

General question behind this talk:

“What is the minimum “noise” or “disorder” achievable at the
output state, optimizing over all possible input states? ”

Important implications in communication theory:
what are the code-words which are less disturbed by the channel ?



What does it mean that 1 is more “disordered” then P2 ?

(i) Von Neumann entropy criterion

S(p1) = —=Tr prlog(pr) > S5(p2) = —Tr palog(pz)

(i) Quantum state majorization criterion [)2 — )01
> ma W21,
j=1
(AN

} = eigenvalues of /Oland 102 arranged in decreasing order

P2 P2
{AZ A%, ..

Remark: condition (ii) is very strong, indeed it can be shown that,
p2 = p1 &> Trf(p1) > Trf(p2)

for every concave function f

In particular, P2 =~ P1 = S(p1) = S(p2)




Input Gaussian channel Output

Coherent states: S C (phase-insensitive)
— Oza,T—oz*a, O r— Jesmset
o) = /‘« > a)(a) > ®(]0) (o)
Vacuum state 0 &
—(

(i) Minimum output entropy conjecture: the output entropy is minimized by coherent input
States

S(@(p)) = S(@(ja)(al)),  Yp,|a)

(i) Majorization conjecture: output of coherent input states majorize all other output
states

3(la)(al) - D(p), Vp.|a)

Giovannetti, et al., PRA, (2004)
Holevo, Werner, PRA, (1997)
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A hierarchy of conjectures (situation before 8/12/2013)

Majorization conjecture

“the output of coherent input states
majorize all other output states”

Giovannetti, et al., PRA, (2004)

5

Minimum output entropy conjecture

“the output entropy is minimized
by coherent input states”

Giovannetti, et al., PRA, (2004)

J

Gaussian optimal encoding conjecture

“the max of classical capacity
is obtained by Gaussian input states”

Gaussian additivity conjecture —>

“The output Holevo information is additive
(entangled code-words are not required)”

Holevo, Werner, PRA, (1997)
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Quantum bosonic systems

H = hwa'a
e.g. single mode of electromagnetic radiation —»
of frequency (W) [a, aT] — 1
Eigenstates aTa n) = nin
(Fock states): ‘ > > CLH?’L) =+vn+1n+1)
Oy — Vil — 1)
vacuum
Coherent states: alay =ala)y, ac€C —»la)= et Z %\n}
a) = e ="|0)

/4

T *
Displacement (or Weyl) operator D(a) — o T a




Phase space quasi-distributions

Characteristic function (or Fourier-Weyl transform):

a'—p*a
X(p) = Trle"® =H %ol =Tr[D(p)p], peC
, : 1 proa—pa” 2
Wigner function: TV (ar) = — | x(pw)d“u, aeC

(closest analogue to a classical phase-space density
but can assume negative values)

1
Q-function: Q(Oé) — ;(oz\p\oz}, aeC

(“not so close analogue” to a phase-space distribution but
at least it is positive)

\

One can use it to define entropy (and majorization) as for classical random variables

Wherl entropy: Sy = —/Q(oz) log[Q (o) ]d?




Gaussian states

Gaussian states = states with Gaussian phase space quasi-distribution

vacuum state

coherent states

thermal state

e—ﬁhwaﬁa
p = 10)(0] p=la){a Tz
N = (aTa> = eﬁm’;—l
2 Iz 2 * * — 1 2
V) = e B x(p) = ez rrTemmet X (p) = em TR
! g —2|a’|? / z —2|a’ —al? Wia') = 1 e l;/rl;
W(a') —e W(a') —e (o) Y
/ 1 a’ |2 / 1 o —al? N 1 |1a’]|5
Qla) = Ze ! Qla’) = 2 ‘ Q) =Tame "




Gaussian channels

Gaussian channels = CPT operations mapping Gaussian states into Gaussian states

Gaussian unitary channels: {/ = eij H = I—IJr —quadraticin (@, GJT

In general: P(p) =Tr|U(p® pB)UT]

Gaussian



Gaussian channels

Gaussian channels = CPT operations mapping Gaussian states into Gaussian states.

Gaussian unitary channels: {/ = eij H = I—IJr —quadraticin (@, GJT

In general: P(p) =Tr|U(p® pB)UT]

Gaussian

Phase-insensitive Gaussian channels = those commuting with phase space rotations

: _ 0t ‘0T it ot
(gauge-covariant ) (D(e 10a apezé)a a) — e 10a aq)(p)ewa a
12

For a single mode, . =
X(p) & x( pe™ 272, A > 1= AP

Most common channels are phase-insensitive: quantum limited attenuator,
thermal attenuator,

quantum limited amplifier,
thermal amplifier,
additive Gaussian noise.



Gaussian phase-insensitive channels

Quantum limited attenuator (beam splitter) 10){0]
&) (p)
£(p) = TrB[inp ® [0} (0T & \ -
UtaU = ja+/T—nb 0<n<l g,)'(p)

Thermal attenuator (thermal beam splitter)

& (p) = Trg[Up @ pnUT]

/

thermal state with j]\,
1 &
N = (aTa> L (p)

T eBhw 1



Gaussian phase-insensitive channels

Quantum limited amplifier 01<0|
0
A = Trg[U(p @ [0) (0))U'] L?ﬁm
L K
UlaU = Vka + 1 — kb’ 1 < k X
‘/b‘rf- (p)
Thermal amplifier PN

AN (p) = Trg[Up @ pnUT]

|
p AY (p)
/ :
thermal state with .,

N = (aTa> L AQ (p)

T eBhw 1




Gaussian phase-insensitive channels

Quantum limited amplifier 0)(0
0
AL = TrB[?<p ® [0)(0)U] P
U'aU = Vka + /1 — kb 5
‘/b‘rf- (p)
Complementary of quantum limited amplifier
(this is not phase-insensitive) 10)(0]
AY = Trs[U(p @ [0)(0])U] A0 ()
L / phase-conjugation P, '\
aY
UvU = vk — 1a' + vk b
10
Important property: for a pure input 0 = |w> (¢| AKJ (IO)

the complementary output states Ag (|¢)(¢]) and Ag (|1) (2))

have the same spectrum.




Gaussian phase-insensitive channels

Additive classical noise channel _
Random displacement

with variance 7},

2N

e_% Nn
Nal) = [ S DD ()P Pl | A

Noiseless phase conjugation
(this is not phase-insensitive and not CPT)

T T -Transposition in Fock basis T(p)
(IO) T IO - Equivalent to time inversion p4> B

Important property: for any state 0,

P and T(p) have the same spectrum.




Gaussian phase-insensitive channels

Summary in terms of characteristic functions

N Attenuator (1) — x(p)e” (PN g < <1

> ampifier  x() = x(VEp)e” (=) (N+1/2)|ul” , Kk>1

> _|> Additive classical noise X(,u) — X(,u)e_n'“‘z, n >0

N 121
+I? Complementary of q. lim. amplifier X(,u) — X(—\/Ii —1p )6 e , k>1

(phase-contravariant)

*<>’ Noiseless phase-conjugation X(,u) — X(—u*)

(phase-contravariant, not CPT)



Gaussian phase-insensitive channels Giovannett, of al. PRA. (2004)

Garcia-Patron et al. PRL, (2012)

Every phase-insensitive Gaussian channel is equivalent to a quantum
limited attenuator followed by a quantum limited amplifier.

d=Ao0&Y * (p)
Az o0&, p >n>%’ﬂ




Gaussian phase-insensitive channels

Giovannetti, et al., PRA, (2004)
Garcia-Patron et al. PRL, (2012)

Every phase-insensitive Gaussian channel is equivalent to a quantum
limited attenuator followed by a quantum limited amplifier.

10)(0]
¢ =A%0&! ) }{ th P (p)

Every phase-contravaraint Gaussian channel is equivalent to a quantum
limited attenuator followed by a quantum limited amplifier, and a
noiseless phase-conjugation.

10)(0]

10){0] ¢
(I)(cont.)(p) —To Ag o 87(7) D * . (I)(Cont.)(p)
n [ A" C

Example: complementary of quantum limited amplifier

|Ol<0| 0)00) 10)(0]
_ | .
> J— P * »W(p)
K S . %
~ Giovannetti, Holevo, Garcia-Patron,
Ag(ﬂ) n=1- 1/ K arXiv:1312.2251, Comm. Math. Phys., (2014)
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An old result about the quantum beam splitter

ANNALS OF PHYSICS: 39, 498-512((1966)

A Quantum Characterization of Classical Radiation™

Y. Auaronov,f D. Fauxorr, E. LerNeEr,] Anp H. PENDLETON

Physics Department, Brandeis University, Waltham, Massachusetls

Any electromagnetic signal is representable, in the quantum mechanical
deseription, by a suitable combination of photon states. We consider the
question of which of the infinite number of possible combinations should cor-
respond to a classical signal. The charaecteristic elassical eriterion we adopt 18
the indistinguishability of the radiation in two separate channels, whether it
has been produced by independent sources or by a gingle source whose output
is divided between the channels. For a quantum source a distinction is in gen-
eral possible IT‘V e prove that the unique quantum state for which a distinction
18 not possible is the pure state characterized by Glauber as maximally co-

herent:l The connection of this indistinguishab-i]ity property with charac-
nistic differences between classical and quantum measurements is empha-
sized.

Aharanov et al., Ann. of Phys., (1966).



An old result about the quantum beam splitter

Case 1 the signal from A is divided between the circuits carrying it to B and C,
Suppose the signal from A is the carrier modulated at audio frequencies by a
recording of Sibelius’ Violin Concerto.

Radio transmission
of Sibelius' violin
concerto

>

B

>

A7 A

N

C

\J

Case 2

In case 2 the transmitters B and € are independent of each other; each has

its own radio frequency oscillator and 1ts own program of audio frequency
modulation. Suppose that B and ' both decide to play recordings of Sibelius’
Violin Coneerto; suppose the recordings are identical.

Radio transmission
of Sibelius' violin
concerto

Radio transmission
of Sibelius' violin
concerto

>

o))

B

o))

C

Is it possible to
distinguish between
case 1 and case 2 ?

Aharanov et al., Ann. of Phys., (1966)



An old result about the quantum beam splitter

Case 1 the signal from A is divided between the circuits carrying it to B and C,
Suppose the signal from A is the carrier modulated at audio frequencies by a
recording of Sibelius’ Violin Concerto.

B
@) ) \>\ >
Radio transmission A
of Sibelius' violin —_—
concerto C v

2 - . .
Case In case 2 the transmitters B and ¢ are independent of each other; each has

its own radio frequency oscillator and 1ts own program of audio frequency
modulation. Suppose that B and ' both decide to play recordings of Sibelius’
Violin Coneerto; suppose the recordings are identical.

: L Is it possible to
Rad!o tr_an:srr_us.smn < >> g distiﬁguish between
of Sibelius' violin E; case 1 and case 2 ?
concerto —
It is always possible
unless the transmitted
Radio transmission O )) > signals are encoded on
of Sibelius' violin | C coherent states
concerto — Aharanov et al., Ann. of Phys., (1966)




An old result about the quantum beam splitter

The “golden property” of a beam splitter:

the only input states producing pure output states for a quantum limited attenuator
are coherent states.

Aharanov et al., Ann. of Phys., (1966) Asboth, Calsamiglia, Ritsch, PRL, (2005) Jiang, Lang, Caves, PRA, (2013)
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The “golden property” of a beam splitter:

the only input states producing pure output states for a quantum limited attenuator
are coherent states.

Aharanov et al., Ann. of Phys., (1966) Asboth, Calsamiglia, Ritsch, PRL, (2005) Jiang, Lang, Caves, PRA, (2013)

proof: (1)l = [¥)( 0)(0
E0(1w) ) = E0_, 1) 0l = W)W ¥) \v\ HACI)
X (2)Xs(25) = x(vViz + V(1 — n)zp)eVO-mz=yizel’ I "
p=0 — » X (2)= X(Viz)et IV A-m=I" E9 () ()

2 =10 > X/E(ZE) = X(\/W,ZE)@%|—\/52E|2

&> w(z)w(zp) = w(z + zp) w(z) = x(2)e2!?

solutions are exp functions @

w(z) =e* 7% yaeC

1 2 — _ . s .
__ ,—35|2|"+Za—za characteristic function
X (z) € of coherent states
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Proof of the majorization conjecture

(phase-insensitive)

Input Gaussian channel Output
Majorization conjecture: o st
the output of coherent input states majorize all ) () @ e(la)al)
other output states Y

O(la)(al) = D(p), Vp,la) | L=




Proof of the majorization conjecture

(phase-insensitive)

Input Gaussian channel Output
Majorization conjecture: B .
the output of coherent input states majorize all ) () @ e (la){al)
other output states Y
p o ©(p)

We prove an equivalent and actually stronger proposition:

Minimization of stricly concave output funcitonals:

For every nonnegative, unitary invariant, and strictly concave functional F and for every
quantum state p

F(®(p)) =2 F(®(lo){a])),  VaeC,

moreover the equality sign is obtained only if /0 is a coherent state.

Strict concavity: F'(ppy + (1 —p)p2) = pF(p1) + (1 —p)F(p2), p € (0,1)
equality holds only if 1 =— P2




Proof of the majorization conjecture

F IS unitary invariant and strictly concave. Then the minimization problem min F(P)
is trivially optimized by pure states and only by them. p



Proof of the majorization conjecture

FIS unitary invariant and strictly concave. Then the minimization problem mm ( )
is trivially optimized by pure states and only by them.

0) (0]
Special case: quantum limited attenuator P Sg(p)
0 _ _ _ _ “golden property” S, \
577 (p) is pure, if and only if, 0 is coherent.

Aharanov et al., Ann. of Phys., (1966)

Then, F(gg(p)) IS minimized only by coherent input states.



Proof of the majorization conjecture

FIS unitary invariant and strictly concave. Then the minimization problem mm ( )
is trivially optimized by pure states and only by them.

0)(0)

Special case: quantum limited attenuator
57(7) (p) is pure, if and only if, 0 is coherent.

“golden property”

Aharanov et al., Ann. of Phys., (1966)

p \iﬂ&?(p)
d

Then, F(gg(p)) IS minimized only by coherent input states.

General case: phase-invariant Gaussian channel

Decomposition property — » & = Ag O 57(7)

5?(7) maps coherent states into coherent states

10){0]

10){0]

3(p)
’g&ﬂ%’ "

Ep(la)(al) = [vnae){y/nal

:> It is enough to prove the theorem only for the quantum limited amplifier Ag

Garcia-Patron et al. PRL, (2012)
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F is strictly concave — it is minimized only by pure input states. (for “invertible” channels)
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Quantum limited amplifier applied to pure states
0
K

V) (Y] A () (¥])
PO (6 ]) = FOAL () (e [ Ko

L () e



Proof of the majorization conjecture

F is strictly concave — it is minimized only by pure input states. (for “invertible” channels)
10){0]
Quantum limited amplifier applied to pure states

V) (Y] AL (Jh) (9])
PO (6 ]) = FOAL () () Ko

L () e

Decomposition of the 0 0
complementary channel AKJ =1To A,ﬂ O 5%;1

Giovannetti, Holevo, Garcia-Patron,

F [Ag(hb)@“)] i&[{_&o 5‘2_1 (|w><w|)} arXiv:1312.2251, Comm. Math. Phys., (2014)

E— K

\

same channel !




Proof of the majorization conjecture

F is strictly concave — it is minimized only by pure input states. (for “invertible” channels)

10){0]
Quantum limited amplifier applied to pure states
) (Y] An([9) (1)
~ Y
FA (1) (1) = FOA (1) () ——
A (o))

Decomposition of the 0 0
complementary channel AKJ =1To A,ﬂ O 5%;1

F [A(|4) ()] ﬂf_ S ()]

Giovannetti, Holevo, Garcia-Patron,
i| arXiv:1312.2251, Comm. Math. Phys., (2014)

— K

\

|
same channel | up to this point same proof of T



Proof of the majorization conjecture

F is strictly concave — it is minimized only by pure input states. (for “invertible” channels)
10){0]
Quantum limited amplifier applied to pure states

V) (Y] AL (Jh) (9])
PO (6 ]) = FOAL () () Ko

L () e

Decomposition of the 0 0
complementary channel AKJ =1To A,ﬂ O 5%;1

Giovannetti, Holevo, Garcia-Patron,

F [Ag(hb)@“)] i&[{_&o 5‘2_1 (|w><w|)} arXiv:1312.2251, Comm. Math. Phys., (2014)
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“golden property” L

Aharanov et al., Ann. of Phys., (1966) this is possible if and only if 19) (1] is coherent.
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moreover the equality sign is obtained only if /0 is a coherent state.
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We have just proved that:

Minimization of stricly concave output funcitonals:
For every nonnegative, unitary invariant, and strictly concave functional F and for every

quantum state )0 ,

F(®(p)) =2 F(®(lo){a])),  VaeC,

moreover the equality sign is obtained only if ps a coherent state.

!

Majorization-conjecture:
the output of coherent input states
majorize all other output states

O(ja)(al) = @(p), Vp,|a)

\V

(Strong) minimum output entropy conjecture:

the output entropy is minimized only
by coherent input states

/ proof: take F'(p) = —Tr[plog(p)

(Strong) minimum output Rényi entropy

C :
the output Rényi entropy is minimized
only by coherent input states

Phase space majorization

The (generalized) Q-function of a coherent
State majorizes every other (generalized)
Q-function

proof: take F(p) — 1 — Tr[pp

|

Lieb, Solovej, arXiv (2012)

proof. Giovannetti, Holevo, Mari
arXiv:1405.4066
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optical waves, optical fiber, free space communication,
microwaves, satellite link, micro-waveguide, etc.
radio waves,

etc.

General question behind this talk:

“What is the minimum “noise” or “disorder” achievable at the
output state, optimizing over all possible input states? ”

Important implications in communication theory:
what are the code-words which are less disturbed by the channel ?



Conclusions

Input Gaussian channel Output
m—( (S = a
Radiation modes:  physical transmission line: Noisy output signal
optical waves, optical fiber, free space communication,
microwaves, satellite link, micro-waveguide, etc.
radio waves,

etc.

General question behind this talk:

“What is the minimum “noise” or “disorder” achievable at the
output state, optimizing over all possible input states? ”

Important implications in communication theory:
what are the code-words which are less disturbed by the channel ?

Answer: [nput coherent states produce the least “disordered” output states



A hierarchy of eenjeetures proofs (state of the art)

there are
still gray
problems...

Quantum Capacity

Entropy photon-number
inequality conjecture

Guha, Shapiro, Erkmen,
Proc. Inf. Th., IEEE, (2008).

De Palma, Mari, Lonc\L,Giovanne I,

arXiv:1408.6410 ‘ } bounds for

| classical

'~ capacity
v
levo
. . ia.Patron, cerf! Ho
- 92 6225, Nat. Phot. (2019

arXiv:1312.62




Supplementary material

For every non-negative, strictly concave function f(x),

No=A e Y ) <) FO)

Proof (:}): follows trivially from concavity

. /
Proof (<=): assume )/ X\ )\ then there exists a minimum integer 77 such that

i)\; < zn:)\j A /()
=1 =1

z, if0<x<N\, n i
construct the function  f0(z) .= { |
AL, it A <z <1,

violates the initial inequality ZUO(X) — O\ =6>0
j 7

J

. 0 H i
Problem: f~ () is concave but not strictly concave. € small enough

/

It's not a big problem, just make it strictly concave: f(x) := f°(x) — ex”
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